
DCII Standards Design

Section 4 Revised 8/30/2000 Page 1 of 33

4 Design Standards
This section describes the standards for objects that will be encountered or defined in the Design phase of
application development.

DCII Standards Design

Section 4 Revised 8/30/2000 Page 2 of 33

4.1 Database Design Transformer

4.1.1 Settings

4.1.1.1 Database

DES-01 The database name selected is “<none>”. This means that the database and tablespace
settings in Designer may be left blank. The table definitions are initially generated without
defining/implementing against a database, tablespace or storage clause. This is also true for
the generation of the index definition under the table definition.

4.1.1.2 Keys

DES-02 The cascade rules for the newly generated foreign key definitions should be the default value
of “RESTRICTED”. Cascade rules will depend on business rules and should be handled on a
case by case basis if the default is not used. Document any deviations from using
RESTRICTED in the entity model description.

DES-03 Surrogate keys are to be defined using the shared sequence domain appropriate for the
sequence. Surrogate keys are named using the convention:

• SEQ_ID
• SEQ_Vn

DES-04 The maximum identifier length should be the default value of 30.

4.1.1.3 Other Settings

DES-05 The ordering of the Columns should be as follows:

• Primary Key Columns (major to minor)
• Mandatory Columns (including User Audit Columns)
• Discriminator Columns
• Foreign Key Columns before Attribute Columns
• Grouping Columns by their Source Entity
• LONG Datatypes

NOTE: Long and long raw columns should be moved to the bottom of the column list after
the table is generated. Only one of these types of columns is allowed.

DCII Standards Design

Section 4 Revised 8/30/2000 Page 3 of 33

4.2 Tables

4.2.1 Naming Convention

DES-06 Define table names in singular. Name tables derived from an entity using the convention:

<application prefix>_<entity_name_in_singular>

Refer to Appendix B for the application prefix names.

DES-07 Tables that implement an entity must have the same name as the entity they implement, with
the spaces translated to underscores. If the table is not based on an entity, then it must be
named using the DFAS standard abbreviations, using underscores between segments.

Table names must be unique within the first 19 characters. This allows for the creating of
snapshots when a two-character prefix is added to the table name. If the resulting name has
more than 26 characters, work with DFAS Data Administration to shorten the table name.

4.2.2 Definition

DES-08 The Designer created short name alias should be kept to 3 characters whenever possible to
prevent names from becoming too long. The maximum alias length is 6 characters.

DES-09 Enter the full name of the table/view in the Display Title field for each table/view. These
names will be seen by end users. The full name is found in the “Long Name” property.

DES-10 Do not deviate from the default value for Init Trans, unless you predict that the table will form
a “hot spot”, requiring many users to update a small number of rows simultaneously.
Document any deviation from the default value in the Description belonging to the table
definition, using the keyword INIT TRANS.

DES-11 Do not specify values for both PCTFREE and PCTUSED. For large tables, specify in the
Description what the source of this information is, using the keywords PCTFREE/
PCTUSED; include the sample size. (Base the values of PCTFREE and PCTUSED on the
guidelines presented in the ORACLE8 Server Administrator’s Guide.)

DES-12 Expand the description of a table to include any design level requirements. The initial
description came from the entity description.

DES-13 Define the purpose and usage in detail for tables that do not directly implement an entity.

DES-14 All table definitions will be generated from the appropriate entity or entities in the logical data
model and will not be created manually. This does not apply to tables which are created
specifically to facilitate the physical implementation of a function.

DES-15 All tables must have an alias. The alias must conform to the same standard set forth for entity
short names. If the table is based on an entity, then the alias must be the same as the entity
short name.

DES-16 To ensure that the appropriate meta-data is included in the Oracle data dictionary, all tables
must have a comment entered into Designer. This comment should describe the basic
information stored in the table.

DCII Standards Design

Section 4 Revised 8/30/2000 Page 4 of 33

4.3 Columns

4.3.1 Naming Convention

DES-17 Define column names in singular.

DES-18 Do not use the table alias as a prefix in column names with the exception of foreign key
columns.

DES-19 If the resulting name has more than 30 characters, use the approved acronyms and
abbreviations in the appendices to shorten it.

DES-20 Do not start column names with P_. The Forms Generator confuses such a column with
parameters and will fail with an error message.

DES-21 Columns that implement an attribute should have the same name as the attribute they
implement, with the spaces translated to underscores. If the column is not based on an
attribute, then it should be named using the naming standard set forth for attributes with the
exception that an underscore is used instead of a space between segments.

DES-22 Keep column names short, but still logical and self-descriptive. Do not repeat the table name
in the column name. Word abbreviations in the column name must follow the approved
DFAS abbreviation conventions. (Appendix B)

DES-23 If you choose to resolve a sub-type design using one table, introduce a discriminator column
to distinguish sub-types using the naming convention:

<super_entity_shortname>_TY

DES-24 Define the discriminator column with datatype VARCHAR2(6), with the sub-type entity short
names as allowable values.

DES-25 Define system-generated primary key columns using the name ID.

DES-26 Name foreign key columns using the convention:

<table_alias_referenced_table>_<primary_key_column_name_referenced_table>

OR

For multiple foreign keys to the same table:

<table_alias_referenced_table>_<relationship identifier>

4.3.2 Definition

DES-27 Assign to columns in a view the same name as the columns in the underlying tables. For
columns not directly based on database columns, refer to the conventions for naming
columns. For columns from different tables, but with the same column name, prefix the
column name with the table alias even if only one of the columns is used in the view.

DES-28 Any column that ranges over a fixed set of predefined values that is less than 21 values should
be associated with a static domain that describes that set of values.

DCII Standards Design

Section 4 Revised 8/30/2000 Page 5 of 33

DES-29 Any column that ranges over a dynamic set of values that is less than 21 values should be
associated with a dynamic domain that describes that set of values.

DES-30 Any column that ranges over 20 values should be placed in a reference table.

DES-31 Define indicator columns that are used to select a small set in a table as optional and
VARCHAR2(1) with allowable values Y and N. If the options are 3-way logic, describe why
this is necessary.

DES-32 For columns of datatype RAW and LONG RAW, specify in the column Description the
internal format that is stored in the column by referencing the industry standard (if any). Use
the keyword DATATYPE RAW in the Description.

DES-33 Columns that are optional should have a short column note that explains the meaning of a null
value occurring for that column, if the meaning is different from VALUE UNKNOWN.

DES-34 Define discriminator columns indicating a sub-type as NOT NULL.

DES-35 Define the initial volume for each column (100% for mandatory columns). Specify the source
of your estimate for optional columns, if any, in the column Description using the keyword
VOLUME.

DES-36 Define the final volume for each column (100% for mandatory columns). Specify the source
of your estimate for optional columns, if any, in the column Description using the keyword
VOLUME.

DES-37 Define all VARCHAR2 columns that are case insensitive as uppercase.

DES-38 When a check box is defined as the display type, the normal default value must be set to a
value within the domain. Leave this field blank only when the check box column is optional,
which implies that the domain has only one allowable value and the other value is NULL.
The check box for an optional column with two allowable values will always insert one of
those values and the column will only be NULL at initialization of the record.

DES-39 If a column is defined in a view, and the underlying table column has a sequence associated
with it, you should define the same sequence here.

DES-40 All referential and transactional tables require the standard audit columns. These are:

COLUMN NAME DATA TYPE DOMAIN
CREATED_BY VARCHAR2(30) TXT030
DATE_CREATED DATE
MODIFIED_BY VARCHAR2(30) TXT030
DATE_MODIFIED DATE

DES-41 Do not deviate from the standard database column datatype for non-displayed columns.

DES-42 Use a check box when only one value is applicable in a yes/no situation, and the yes/no
statement is not contrived or obscure. A check box can be initialized to NULL, but it cannot
be set to NULL.

DES-43 Use a Boolean set when a maximum of one of out of two values is applicable, and if the list
will be static throughout the life of the product. A Boolean set can be set to NULL.

DCII Standards Design

Section 4 Revised 8/30/2000 Page 6 of 33

DES-44 Use radio group, radio group (meaning) or radio group (abbreviation) when a maximum of
one of two to five values is applicable, and if the list will be static throughout the life of the
product.

DES-45 Use pop list, pop list (meaning) or pop list (abbreviation) when only one of three to fifteen
values is applicable, and the list is never expected to grow beyond fifteen.

DES-46 Use LOV window when only one of five to twenty values is applicable, and the list is
dynamic during the life of the product. (All dynamic domains and reference tables should be
displayed using a LOV window.

DES-47 Avoid text list, text list (meaning) and text list (abbreviation) due to the amount of space they
require. If using text lists, use them for lists of between three and twenty entries.

DES-48 Use combo box, combo box (meaning) or combo box (abbreviation) if all of the following is
true:

• You have a list of allowable values that will be used most of the time.
• The user already knows that this list does not cover all situations.
• While at the same time the user is not able to complete the list.

DES-49 REMOVED

DES-50 Foreign key columns should be displayed in the same sequence as their primary key
counterparts.

DES-51 Do not specify the highlighting option at the column level, but rather at the module level.

DES-52 The first letter of any word in a prompt is capitalized. Prompts should clearly indicate to what
property the column refers.

DES-53 Hint texts take the form of the remainder of the sentence, “The value in this field registers
<hint text>“.

DES-54 Hint texts for indicator columns use a question form. Do not include the allowed values in the
hint text, since this might complicate the repopulating of domain values.

DES-55 Define a descriptor column in all situations where the primary key has no meaning of its own.

DES-56 Only use the type “Seq In Parent” (Sequence within Parent) in addition to server-side
implementation when this field needs to be displayed in the generated form.

DES-57 If the column has a Derivation Expression that implements a Tuple Rule, you should record a
reference to this rule here.

DES-58 Set the Suggestion List property to ‘checked’ if you use Combo Box as display datatype for
the column.

DES-59 Only use Value to enter a lower limit for a column.

DES-60 Only use High Value to enter a higher limit for a column.

DES-61 Do not use abbreviations. Use the domain object if you want to record an enumerated domain.

DES-62 Do not use meanings. Use the domain object if you want to record an enumerated domain.

DCII Standards Design

Section 4 Revised 8/30/2000 Page 7 of 33

DES-63 The nature of a derivation imposes implementation at the server-side using a database trigger.
Use this expression only if the value of the derived column must be displayed on the screen.
You should still implement the derivation expression at the server-side, ensuring that the
derived value is only calculated if not yet done at the client-side.

DES-64 The Derivation Expression of the column must not refer to itself. The derived column also
must not be defined to derive its value from an internal source, such as a generated sequence
number, a username, or sysdate. The column should not have a default value.

DES-65 Do not use the Where/Validation Expression on the column level. Instead, define any
Where/Validation Expression on the table level in the Table Key Constraints Definition
tabsheet.

DES-66 Describe the purpose of the column if this is not clear from the column name itself.

DCII Standards Design

Section 4 Revised 8/30/2000 Page 8 of 33

4.4 Constraints

4.4.1 Naming Convention

DES-67 Constraint names will conform to the default Designer constraint naming conventions that are
automatically created when using the Database Design Transformer. Any manually created
constraints must conform to this standard.

4.4.1.1 Primary Key Constraint

DES-68 Name primary key constraints using the convention::

<source_table/view_alias>_PK

Example:

For the table CUSTOMER with the alias CUST the primary key will be: CUST_PK

4.4.1.2 Unique Key Constraints

DES-69 Name Unique Key Constraints using the convention:

<table alias>_UK
 Where <table alias> is the alias of the table that contains the unique key constraint.

 Example: The table called ORDERS has the table alias ORD. The unique key
 constraint will be named ORD_UK.

 In the event of multiple unique key constrants on the same table, a number should appear as a
suffix to the table alias with all other parts of the name remaining the same.

Example for multiple unique key constraints: The table called PRODUCTS has the table
alias of PROD. There are two unique key constrants on the table. They will be named
PROD1_UK and PROD2_UK.

4.4.1.3 Foreign Key Constraints

DES-70 Name foreign key constraints using the convention:

When there is only one foreign key constraint:

<source_table/view_alias>_<ref_table/view_alias>_FK

When there are multiple foreign key constraints to the referenced table, the relationship
identifier should provide a meaningful name to identify the purpose of the foreign key
constraint:

<source_table/view_alias>_<relationship_identifier>_FK

Designer will generate one of two possible names depending on the number of relationships
between two entities. Foreign key names are usually generated with the following algorithm:

Foreign key = <table alias of the target table>_<table alias of the originating key>_FK

DCII Standards Design

Section 4 Revised 8/30/2000 Page 9 of 33

Example:

ORDER _LINES (ORDLIN) >---------- ORDERS (ORD)

The foreign key constraint on ORDER_LINES will have the foreign key constraint name
generated as ORDLIN_ORD_FK.

However, if a table has multiple foreign keys to one other single table, then the algorithm for
the first foreign key constraint will be the same as above. However, the second constraint with
be generated as follows:

Foreign key = <table alias of the target table>_<table alias of the originating
key>_relationship name_FK

Where ‘relationship name’ is the text associated with the relationship as depicted on the
logical model.

Example:
ORDERS >--------- LOCATIONS (LOC) shipped from
 (ORD) >--------- LOCATIONS returned to

The foreign key constraints on ORDERS will have the foreign key constraint names generated
as:

ORD_LOC_FK
ORD_LOC_RETURNED_TO_FK

For the sake of clarity, in this case the first FK constraint should be renamed to:

ORD_LOC_SHIPPED_FROM_FK

4.4.1.4 Check Constraints

DES-71 Name check constraints using the convention:

<table/view_alias><optional_number><_><optional constraint column name>_CK

Both optional values are to be used as desired by the designer.

4.4.2 Definition

4.4.2.1.1 Primary Key Constraint

DES-72 Set the “Validate In” property to BOTH for primary keys of a table. If for any reason you
deviate from this standard, document the reasons in the Primary Key Description.

DES-73 Set the “Validate In” property to CLIENT for primary keys of a view. If for any reason you
deviate from this standard, document the reasons in the Constraint Description.

DES-74 Define all columns that are part of the primary key as not updateable. If any of the columns in
the primary key need to be updated, make the current primary key an alternate key and
introduce a system-generated key to serve as primary key.

DES-75 Define all columns that are part of the primary key as not null.

DES-76 For tables, document the cause of the Primary Key constraint not being enabled.

DCII Standards Design

Section 4 Revised 8/30/2000 Page 10 of 33

4.4.2.1.2 Unique Key Constraints

DES-77 Columns in a unique key constraint should either be all defined as NULL or all defined as
NOT NULL. Whenever mixed NULL and NOT NULL columns are used, the reason should
be documented in the notes section of the unique key constraint.

If the columns in a unique key constraint are defined as NULL, your application code should
enforce that for each row in the table either one of the following is true:

All unique key columns are null.

All unique key columns do have a value.

If legacy data causes a unique key to have mixed null and not null columns, then document
this deviation in the description field of the unique key constraint.

DES-78 Unique keys are allowed to be updated, as long as they are protected by a unique index.

DES-79 For tables, document the reasons of the following deviations:

Validate in property is set to Client, Server or None.

The key constraint is not enabled.

DCII Standards Design

Section 4 Revised 8/30/2000 Page 11 of 33

4.5 Indexes

4.5.1 Naming Convention

4.5.1.1 Primary or Unique Key Indexes

DES-80 Designer does not create primary or unique key indexes. Oracle7 and newer versions
implicitly create the index when creating primary and unique key constraints in the database.
Do not create primary key indexes in the repository as this will result in problems when
running the DDL scripts generated from Designer.

4.5.1.2 Foreign Key Indexes

DES-81 Name Foreign Key Indexes using the convention:

<foreign key constraint name>_I

Designer will automatically create foreign key indexes through the Database Design
Transformer if it is specified in the run options.

Example:

For the foreign key FND_ACT_FK, the resulting foreign key index name would be
FND_ACT_FK_I.

DES-82 In the case where multiple foreign keys were generated, and one was subsequently changed, it
will be necessary to manually modify the associated index name so that it matches the
renamed constraint.

Example:

Designer created:

FND_ACT_FK with index FND_ACT_FK_I

You modified the constraint to:

FND_ACT_FROM_FK

So you will need to modify the index to be:

FND_ACT_FROM_FK_I

4.5.1.3 Non-Key Indexes

DES-83 For indexes created manually that are not related to any keys, name the index using the
convention:

<table alias>_<column name>_NU_I

Where ‘NU’ stands for non-unique.

DCII Standards Design

Section 4 Revised 8/30/2000 Page 12 of 33

DES-84 If the index to be created is a bit-mapped index, name the index using the convention:

<table alias>_<column name>_BM_I

Where ‘BM’ stands for bit-mapped.

DES-85 If the index is on multiple columns, then <column name> will be the first column in the
series.

Example:

To improve query performance, an index on the column for Last Name in table Employee
(EMP) is created. The index name will be:

EMP_LAST_NM_NU_I

4.5.2 Definition

DES-86 Index all foreign keys, unless you predict that the index will not deliver any performance gain
or that maintaining the index will create unacceptable overhead. Document any deviations in
the Description for the foreign key definition using the keyword NO FK INDEX.

DES-87 Index those columns that you reference frequently in WHERE clauses.

DES-88 The Oracle Designer tool creates indexes to match the primary, foreign and unique key
constraints. This default name should not be changed.

DES-89 Do not define unique indexes, define unique key constraints instead.

DES-90 Do not deviate from the default value for Init Trans, unless you predict that the index will
form a “hot spot”, requiring many users to update a small number of rows simultaneously.
Document any deviation from the default value in the Description belonging to the index
definition using the keyword INIT TRANS.

DES-91 Do not deviate from the default value for Max Trans.

DES-92 Document any design decisions in the Description belonging to the index definition using the
keyword FREE SPACE.

DES-93 In the Description for the index definition, document the reasons for any deviation between
the column sequence for the index and the columns sequence in the key constraint definition.
Use the keyword COLUMN SEQUENCE.

DCII Standards Design

Section 4 Revised 8/30/2000 Page 13 of 33

4.6 Sequences

4.6.1 Naming Convention

DES-94 Name the only sequence for a table or view using the convention:

<application_prefix>_<table/view_alias>_SEQ

DES-95 Name multiple sequences for the same table or view using the convention:

<application_prefix>_<logical_name>_SEQ

The logical name may be a column name or whatever name best defines the purpose of the
sequence.

4.6.2 Definition

DES-96 Set the Code Control property to Oracle Sequence if gaps in the sequence numbering are
allowed. If gaps are not allowed, you should set this property to Code Control Sequence.

DES-97 Briefly define the purpose and usage of each sequence.

DES-98 Use ascending sequences. Explicitly state any deviation from this rule in the description for
the sequence definition.

DES-99 Increment sequences by a value of 1. Explicitly state any deviation from this rule in the
description for the sequence definition.

DES-100 Do not cycle sequences. Explicitly state any deviation from this rule in the description for the
sequence definition. Indicate how previously generated numbers are removed before the
sequence “wraps”.

DES-101 Do not have sequences generated in the exact order of the request. Explicitly state any
deviation from this rule in the description for the sequence definition. Indicate why the
sequences should absolutely be generated in the requested order. A good exception is the use
of a sequence generator as an internal “clock” to indicate the exact order in which certain
events occurred by requesting a new sequence value. Minimum, Maximum

DES-102 Do not make maximum and minimum values larger than the length of the column for which
the sequence is used.

DCII Standards Design

Section 4 Revised 8/30/2000 Page 14 of 33

4.7 Views

4.7.1 Naming Convention

DES-103 Name the view using the convention:

<table_name>_V

DES-104 The maximum length for a view name will be 26. If the name of the view exceeds 26, then
use the table alias, abbreviations and acronyms as needed. View names must be singular just
like tables.

4.7.2 Definition

DES-105 Define an alias for the view. This alias should be exactly three characters and should be
unique across all tables and views within the application.

DES-106 Do not use a column prefix for view columns.

DES-107 Enter the display title that most likely will be used if the view is used as a module base
table/view usage.

DES-108 Define the purpose and usage of the view.

DES-109 Use the same alias as used for the underlying table itself. If a table is used more than once in
the view definition, add a sequence number to the table alias.

DES-110 Assign to columns in a view the same name as the columns in the underlying tables. For
columns not directly based on database columns, refer to the conventions for naming
columns.

DES-111 If the underlying column is in a domain, the view column should be in the same domain.

DES-112 The qualifier, if used, should give the end users a clear idea of the purpose and contents of the
view. Use the criteria qualifier if

• Using the table name alone is not unique
• The view is based on a join of 2 or more tables
• The view contains a where clause
• The view is unusually complex.
• The view is a summary.

Examples:

CEFT_ORG_ACTIVE_V provides information on only active ORGANIZATIONS.

CEFT_ORG_VEND_V is a view joining the ORG table to the VEND table.

CEFT_ORG_BANKS_V provides information about CUSTOMERS and their NOTES of
type ‘BANKS’.

DCII Standards Design

Section 4 Revised 8/30/2000 Page 15 of 33

4.8 Database Triggers

4.8.1 Naming Convention

DES-113 Name a database trigger using the convention:

<application prefix>_T<table_alias>_<when><type>_<level>

When should be abbreviated:

• Before = B
• After = A

Types should be abbreviated:

• Insert = I
• Update = U
• Delete = D

Level should be abbreviated:

• Row = R
• Statement = S

DES-114 Extend the name of a row-level trigger, which fires on update with a logical name, if there are
more than one of such update triggers.

4.8.2 Definition

DES-115 The module name should be the same as the name of the trigger.

DES-116 Define the conditions that apply to all business rules enforced in the database trigger in the
Trigger When condition.

DCII Standards Design

Section 4 Revised 8/30/2000 Page 16 of 33

4.9 Application Design Transformer

There are no applicable standards for the Application Design Transformer.

DCII Standards Design

Section 4 Revised 8/30/2000 Page 17 of 33

4.10 Modules

4.10.1 Scope
The names of all modules developed with and generated from Oracle Designer will conform to these
conventions. This includes all menus, reports, screens, libraries, and webserver modules. In addition, all
SQL*Plus reports (where documented) developed at DCII will also conform to these conventions. The
Director of DCII Engineering must approve changes to these standards.

DES-117 The following distinctions between modules developed for or associated with Legacy systems
and Vendor-supplied software and those to be developed for new or replacement systems are
recognized:

• All new or replacement systems developed for DCII will be developed using the DPET-
approved release of the Oracle Designer tool set. All modules, whether custom designed
or generated from Designer, will adhere to standards without exception.

• All modules that use a Designer supported language must be stored in the repository.
• Legacy modules’ names must be changed to conform to the DFAS standard.
• Vendor’s modules’ names will not be changed. If objects from a commercial-off-the-

shelf Package (COTS) are recovered into the Designer repository, and any modules are
generated in-house to use those vendor objects, the new modules will be developed
according to this standard.

4.10.2 Naming Convention

4.10.2.1 Modules

DES-118 Name Module Short Names for primary modules using the convention:

<application prefix>_<module type identifier>< descriptor>

See Appendix B for approved application prefixes.

Module type identifiers are:

• F = Form
• K = Package (PL/SQL)
• L = Developer Library
• M = Menu
• O = Object Library
• P = Procedure (PL/SQL)
• R = Report
• S = Shell
• T = Triggers (PL/SQL)
• U = Function (PL/SQL)
• W = Web Form
• X = Template Form

DES-119 Module Short Names should not exceed 20 characters.

DES-120 Define Module Names using logical names, without special characters.

Screen Example:

Short Name: FICS_FUPDATE

DCII Standards Design

Section 4 Revised 8/30/2000 Page 18 of 33

Translation: File Inventory Control Subsystem, Form, Update Function

Reports Example:

Short Name: FICS_RUPDATE

Translation: File Inventory Control System, Report, Updates

4.10.2.2 Module Components

All Module Components (MC) must include the alias of the base table name upon which the
module is based.

Example: INV is the MC name for a component based on the Invoices table

DES-121 If there will be multiple components within a module using the same base table, then the
name will include an underscore followed by an abbreviation of the purpose.

Example: INV_QRY is the MC name for a second component based on the Invoices table
that will be query only

4.10.2.3 Module Component Elements

4.10.2.3.1 Item Groups

DES-122 Item groups may be named to represent a functional grouping of data. The name may be
multiple words with no underscores between them.

Example: The item group encompasses columns that make up the information for a mailing
address so the item group is named MAILING ADDRESS

DES-123 If the layout item group is a horizontal item group, the name will be prefixed with an “H”. If it
is a vertical item group, it will be prefixed with a ‘V’. (Additional prefixes may be developed
to represent the additional functions for which item groups are used in reports generation.)

Example: H MAILING ADDRESS is a horizontal item group containing columns for a
mailing address

DES-124 If the purpose of the item group is to enable the generation of a specific layout then the name
will be LAYOUT #, where # represents an integer.

Example: V LAYOUT 1 is a vertical item group used specifically for layout generation

DES-125 If nested item groups are used to achieve a complex layout then the name of the nested item
groups will be NESTED LAYOUT #-#, where the first # represents the number associated
with the parent layout group and the second # is a sequential integer within that group

Example: H NESTED LAYOUT 1-2 represents the 2nd nested item group within the item
group named LAYOUT 1. It is a horizontal item group.

Example: V NESTED LAYOUT 1-2-1 represents the 1st nested item group within the 2nd

nested item group within the item group named LAYOUT 1. It is a vertical item group.

4.10.2.3.2 Unbound Items

DCII Standards Design

Section 4 Revised 8/30/2000 Page 19 of 33

DES-126 All unbound items will be prefixed with UB and an underscore followed by text that describes
its function. Approved abbreviations and acronyms may be used as necessary.

Example: UB_TOTAL_PRICE is an unbound item that will contain the results of a
calculation for total price

4.10.2.3.3 SQL Query Sets

DES-127 All SQL Query sets will be named with the word UNION and the table alias of the base table
usage in the module component.

Example: UNION EMP is the name of the query set containing a reference to the
EMPLOYEES base table usage

4.10.2.3.4 Navigation Action Items (Buttons)

DES-128 Navigation action items will be named using a prefix of NA followed by the module
component name followed by the target module component or module name with an
underscore in between

Example: NA_CUST_FNAPF010 indicates a button to navigate from the CUST component
in the current module to the module FNAPF010

4.10.2.3.5 Custom Action Items (Buttons)

DES-129 Custom action items will be named using the prefix CA followed by text that describes the
function of the action item. Approved abbreviations and acronyms may be used as necessary.

Example: CA_CALC_TOTAL indicates a button that when pressed will cause a total to be
calculated

4.10.2.3.6 Application Logic Event Code Segments

DES-130 All code segments entered to implement custom application logic will be named using a text
string that defines the purpose of the code. Approved abbreviations and acronyms may be
used as necessary.

Example: Use parameter value when present

4.10.2.3.7 Application Logic Named Routines

DES-131 Named routines will conform to the same standard set forth for PL/SQL procedures

4.10.2.3.8 API Logic Code Segments

DES-132 API Logic code segments will conform to the same standard set forth for Application Logic
code segments.

4.10.2.4 Named Preference Sets

DES-133 All preference sets will be defined by the DCII Common Service Functions group. Name
preference sets using the following convention:

DCII Standards Design

Section 4 Revised 8/30/2000 Page 20 of 33

CSF_<descriptor>

Where the descriptor is a brief explanation of the purpose of the preference set.

DCII Standards Design

Section 4 Revised 8/30/2000 Page 21 of 33

4.11 PL/SQL and SQL

4.11.1 Naming Conventions

See 4.10.2.1 Module Naming Convention

4.11.2 General Standards

DES-134 PL/SQL modules are considered database objects and are generated via the Server Generator,
not the client Generators used by screens and reports. Placing packages, procedures,
functions, and database triggers in the server tends to reduce traffic across the network.

DES-135 PL/SQL provides a mechanism to manipulate data procedurally. Thus you can use SQL
statements to manipulate data while using flow control statements to process this data.
PL/SQL is a block-structured language. The basic units that make up a module (packages,
procedures, functions, and anonymous blocks) are logical blocks, which in turn can contain
other nested blocks.

A PL/SQL block has three sections:

• Declarative section
• Executable section
• Exception-handling section

DES-136 All features of the PL/SQL language are allowed unless the feature has been shown to be
unsafe. The GOTO statement is one such feature that has been shown to be unsafe, and will
not be used.

DES-137 All PL/SQL modules must be written in such a fashion that an experienced PL/SQL
programmer can maintain the software without undue recourse to other documents. All
modules must be well documented. At a minimum this includes the purpose of the module, a
point of contact, and a history section.

DES-138 The preferred method for storing modules in the Designer repository is the free-format
method.

DES-139 All PL/SQL procedures and functions will be implemented as part of a PL/SQL package.
There will be no standalone PL/SQL procedures or functions implemented as part of the
production system.

4.11.3 Documentation and Formatting

DES-140 Inline documentation should be used to clarify and or document individual parts of a SQL
statement, and temporarily disable part of a SQL statement.

DES-141 Any changes made to a SQL statement (e.g. enable or disable index use or hints used for the
cost-based optimizer) should include comments documenting the changes as well as the
original condition of the SQL statement. Also, the date modified as well as the name of the
person making the modification.

DES-142 Single line comments will be documented with a “--“. Multiple line comments must start
with /* and end with */

Examples:

DCII Standards Design

Section 4 Revised 8/30/2000 Page 22 of 33

Single Line:
-- statement created on 05/10/00 by Ron Plew
select t1.column1, t1.column2, t1.column3, t1.column4,
 t1.column5, t1.column6
from table1 t1;

Comment within a SQL statement:
select t1.column1, t1.column2,
 t1.column3, t1.column4,
 t1.column5, t1.column6 -- added column6 10 May 00, Ron Plew
 from table1 t1;

Multi-line comment brackets (/* & */) should be on lines by themselves in columns 1 and 2.

Example:
/*
This statment was written on 05/10/00 by Ron Plew.
The purpose of the statement is to return specific data quickly
and efficiently.
*/
select t1.column1, t1.column2, t1.column3, t1.column4,
 t1.column5, t1.column6
from table1 t1;

DES-143 A standard header must be used for all PL/SQL modules. It must be placed between the
name and the “IS”.

Example:
PACKAGE package_name IS
/*
 || Author: S. Feuerstein 11/95
 ||
 || Overview: Manage list of selected items correlated with a block
on the
 || screen
 ||
 || Major modifications (when, who, what)
 || 12/94 - SEF - Create package
 || 3/95 - JRC - Enhance to support coordinated blocks
*/

DES-144 A header must be used for the bodies of all modules that are database objects (functions,
procedures, package bodies, and triggers). The modification information should include
changes in the implementation due to maintenance, modifications etc.

DES-145 Use consistent spacing for indentation of all lexical elements. Each new lexical level should
be further indented. Three spaces is recommended for indentation.

DES-146 Align parameter passing modes. The first parameter in the list can either be on the same line
as the subprogram name or on the line following.

Example:
PROCEDURE sample (copied_in IN some_type,
 copied_in_out IN OUT some_other_type,
 copied_out OUT yet_another_type);
or—

PROCEDURE sample (copied_in IN some_type,
 copied_in_out IN OUT some_other_type,

DCII Standards Design

Section 4 Revised 8/30/2000 Page 23 of 33

 copied_out OUT yet_another_type);

DES-147 Vertically align major block-keywords. As an option, the keyword ‘IS’ may be included in
this alignment.

Example # 1:

DECLARE
…
BEGIN
…
EXCEPTION
…
END <name>;

Example # 2:
PROCEDURE … IS
…
BEGIN
…
EXCEPTION
…
END <name>;

Example # 3:
FUNCTION … RETURN…
IS
…
BEGIN
…
EXCEPTION
…
END <name>;

4.11.4 Data Load Standards

DES-148 Whenever possible, the relationship from staging table to target table should be 1:1.

DES-149 All data loads shall capture throughput data. This can be accomplished via PL/SQL calls to
the CSF_TIMING package.

DES-150 All data loads shall provide debugging messages via the PL/SQL package CSF_DEBUG.

DES-151 All data loads will have periodic commits. The commit rate will be parameterized to facilitate
tuning.

DES-152 All staging table data will be deleted immediately after successful processing (i.e. record at a
time). Data that contains errors is to remain in the staging table.

DES-153 Error handling and messages should be meaningful and provide sufficient information to fix
errors. For example, an additional column (ERR_TXT VARCHAR2(2000)) in a staging table
provides a good method for writing error information for a single record.
CSF_ERROR_LOG provides a good method for global messages relative to a load.

DES-154 Grouping all PL/SQL procedures into a single package is preferred over standalone
procedures. For example, a Navy load package might contain all of the procedures for
loading Navy data.

DCII Standards Design

Section 4 Revised 8/30/2000 Page 24 of 33

4.11.5 PL/SQL Coding Standards

DES-155 Use underscores to separate words within an identifier.

DES-156 Make PL/SQL keywords distinguishable from other elements of the program. There are at
least two common standards in existence.

• Keywords should be in uppercase and user-defined identifiers in lowercase.
• Keywords should be in lowercase and user-defined identifiers in Initcaps.

Neither addresses Built-in function and package names (LENGTH, DBMS_OUTPUT etc.)

DES-157 Spell out identifiers completely unless there is a common, unambiguous abbreviation that
takes up significantly fewer characters. Use the standard DFAS abbreviations

DES-158 Avoid using database column names or database table names as the names of variables.

DES-159 Variables declared at the outermost level of a package body should be prefixed with ‘g_’.

DES-160 Boolean variables should be named to indicate a true/false proposition. Variables of all other
datatypes should be nouns.

Example:
Account_is_open Boolean;
Account_Name VARCHAR2 (100);

DES-161 Name a parameter in terms of its mode (IN, OUT, IN OUT). Use the mode as a suffix.
Examples:

PROCEDURE Place_call
(company_id_in IN NUMBER,
call_type_in_out IN OUT VARCHAR2,
company_rm_out OUT VARCHAR2)

DES-162 Name a procedure to describe the action taken (verb-noun structure, such as
‘calculate_totals’).

DES-163 The rules for function names should be the same as the rules for variables (see NAM-002).
That is, the name of a Boolean function should obey the same rules as the name of a Boolean
variable.

DES-164 The name of a cursor should be descriptive and should end with the suffix ‘_cur’. The name
of a record anchored to a cursor or the name of a control variable in a cursor FOR-loop should
be the same name as the cursor but should use the suffix ‘_rec’ instead of ‘_cur’ (See NAM-
014).

DES-165 The name of a user-defined type should have a suffix ‘_type’

Example # 1:
TYPE strings_type IS TABLE OF VARCHAR2(100)
 INDEX BY BINARY_INTEGER;

Example # 2:
my_list_tab strings_type;

DES-166 Record variables should be suffixed with “_rec”. This should be true irrespective of the
category of record (user-defined, table-based, and cursor-based).

DCII Standards Design

Section 4 Revised 8/30/2000 Page 25 of 33

Example:
TYPE name_type IS RECORD
 (
 first_name VARCHAR2(20),
 last_name VARCHAR2(20)
);

person_rec name_type;

DES-167 PL/SQL collection (index-by, VARRAY and nested tables) variables should be named to
indicate their collective nature. This can be accomplished by naming the collection as a plural
noun or by distinguishing the variable name with a collective suffix such as ‘_tab’, ‘_tbl’ or
‘_list’.

DES-168 Name each block statement (anonymous block) with a block label; include that same label
between the END of the module and the semicolon.

DES-169 Include the name of any module (package spec, package body, function, procedure, block
statement) between the END of the module and the semicolon.

DES-170 For a numeric FOR loop, incorporate the word “index” or “counter” or something similar into
the name of the loop index.

Name each loop with a loop label and repeat the label following the END LOOP. This
standard can be ignored in the case of very small loops whose intent is easily discerned.

Example:
FOR year_index IN 1..12 . . .
…
…
END LOOP; -- year_index

4.11.5.1 PL/SQL Arguments

DES-171 Name Arguments for PL/SQL packages and procedures using the following convention:

p_<argument name>

Where <argument name> is a logical, meaningful, and concise name representing the value
that will be passed to the program unit. Where the argument will be used to hold the value of
a column in a SQL statement, then <argument name> must be the same as the column name.

DES-172 Precede the <argument name> with “P” so that there are no conflicts with database object
names or confusion as to which are PL/SQL arguments and which are database objects. All
arguments must be in lower case, excluding the prefix.

Example: p_header_id

4.11.5.2 PL/SQL Variables

DES-173 Name PL/SQL program variables using the following convention:

v_<variable name>

Where <variable name> should be a logical, meaningful, and concise name representing the
value the variable will hold. Where the variable will be used to hold the value of a column in
a SQL statement, then <variable name> must be the same as the column name.

DCII Standards Design

Section 4 Revised 8/30/2000 Page 26 of 33

DES-174 Precede the <variable name> with “v” so that there are no conflicts with database object
names or confusion as to which are PL/SQL variables and which are database objects. All
variables must be in lower case, including the prefix.

Example: v_header_id

4.11.5.3 PL/SQL Constants

DES-175 Name PL/SQL program constants using the following convention:

c_<constant name>

Where <constant name> should be a logical, meaningful, and concise name representing the
use of the value the constant will hold. Where the constant will be used to hold a value to be
assigned to a column in a SQL statement, then <constant name> must be the same as the
column name.

DES-176 Precede the <constant name> with “c” so that there are no conflicts with database object
names or confusion as to which are PL/SQL constants and which are database objects or
variables. All constants must be in lower case, including the prefix.

Example: c_header_id

4.11.5.4 PL/SQL Global Variables (forms only)

DES-177 Name Oracle Forms global variables using the following convention:

global.<variable name>

Where <variable name> should be a logical, meaningful, and concise name representing the
value the variable will hold. Where the variable will be used to hold the value of a field in the
data block, then <variable name> must be the same as the field name.

Global variables must always be referenced with ‘:global.’ preceding the variable name.
Therefore, no additional prefix is required to distinguish global variables from local or
standard variables. In order to avoid confusion, do not use the same name for both a global
and a local variable.

Example: header_id (i.e., :global.header_id)

4.11.5.5 PL/SQL Declarative Section

DES-178 Each declaration should begin on a new line.

DES-179 Whenever possible, anchor variables, record components, PL/SQL table components, and
parameters to the appropriate database tables, database columns and cursors.

NOTE: When providing packaged resources to users, in some circumstances, anchoring has a
downside. Consider the situation where the user has access to the package but does not have
access to the underlying database tables. In this case, anchoring does not give the information
needed in order to use the spec. It might be preferable to describe the interface (records,
PL/SQL tables, subprogram parameters etc.) in terms of standard datatypes instead of
anchored datatypes.

DES-180 Declare variables as constants if their values do not change throughout the code.

DCII Standards Design

Section 4 Revised 8/30/2000 Page 27 of 33

DES-181 Specify a full column list (as opposed to using ‘*’) in each cursor declaration unless all the
columns are selected AND input into a variable declared with the <cursor>%ROWTYPE (as
opposed to inputting into a list of variables). In the case of tables with a large number of
columns, the programmer may opt to use SELECT * if the majority of columns are being used
in the SELECT statement.

DES-182 Explicitly declare exceptions for each Oracle error condition that is expected in the normal
execution of the program and is not already mapped to an Oracle exception name. Use the
pragma, EXCEPTION_INIT, to map the exception to the Oracle error number.

DES-183 Provide well-delimited sections for the following categories: Cursor declarations, type and
subtype declarations, variable and constant declarations, exception declarations, and
subprogram declarations. The variable declaration section may be further decomposed into
scalar variables, record variables and collection variables.

DES-184 To avoid hardcoding of literals, declare named constants for use in the executable portion of a
block.

4.11.5.6 PL/SQL Executable Section

DES-185 Do not use GOTO statements.

DES-186 Close all explicitly opened cursors. This is especially important for cursors declared in
packages. Cursors declared in other blocks are implicitly closed when the block is
abandoned; close them anyway.

DES-187 Use explicit datatype conversion functions instead of implicit conversions. An exception is
the concatenation of items in a call to DBMS_OUTPUT.PUT_LINE for debug purposes.

DES-188 Remove all hard coded values (except for 0 and 1) for the program and replace them with
named constants (see DEC-012) or functions defined in packages. It is easier to change a
named constant once in a separate area than to catch and change each hard coded value in a
program or function.

DES-189 Never exit from a numeric or cursor FOR loop or a WHILE loop with an EXIT or RETURN.

DES-190 Always test for NULL with ‘<expression> IS [NOT] NULL’.

Remember that NULL is never equal to any value and is never not equal to any value.

DES-191 In a package that calls the built-in functions, USER and SYSDATE, add the following
variables and refer to them instead of the functions:

g_user VARCHAR2(50) := USER;
g_sysdate DATE := SYSDATE;

4.11.5.7 PL/SQL Exception Handling

DES-192 Trap predefined oracle exceptions by name. Do not use WHEN OTHERS and then
discriminate on the SQLCODE function result.

DES-193 All expected Oracle error codes should be handled with the predefined Oracle exception name
or a user defined exception name that has been mapped with pragma EXCEPTION_INIT
procedure.

DES-194 Do not use exceptions to perform branching logic.

DCII Standards Design

Section 4 Revised 8/30/2000 Page 28 of 33

DES-195 Each exception handler for a function must return a value or raise an exception (either the
same one using RAISE or a different using its name). Remember that if a function reaches its
END, an exception (function returned without value) is raised. The compiler will check to
see that your function contains a RETURN but will not check to see that your EXCEPTION
handler part has a RETURN.

DES-196 When using the WHEN OTHERS clause, capture (display, log, etc.) the actual error condition
(using the built-in function, SQLERRM) in the exception handler.

4.11.6 SQL Coding Standards

4.11.6.1 General Layout of SQL Statements

DES-197 Lowercase should be used when writing SQL statements.

Note: Literal constants may require uppercase characters.

DES-198 Start each clause that contains a column name, table name, or SQL reserved word on a new
line.

DES-199 Align code by using spaces to indent. Do not use tabs.

Example:
select t1.column1, t1.column2
 t1.column3, t1.column4
from table1 t1
where exists (select t2.column1
 from table2 t2)
and t1.column1 > value1
order by 1;

4.11.6.2 SQL Statements - General

DES-200 Put single space after every keyword, identifier, comma, and operator. Do not put a space
between scalar or set functions, or within parenthesis. An exception for the parenthesis is:
When enclosed in parenthesis, a comma should be followed by a space.

Example:
select t1.column1, t1.column2, t1.column3 * value1,
 min(t1.column4), t1.column5, t1.column6,
 substr(t1.column7, 1, 3)
from table1 t1
where t1.column1 > value2;

DES-201 Use aliases for tables and columns. The table alias should be the initials from the table name
or an abbreviation. The alias should be less than ten characters. Similar names will be
suffixed with numbers. Prefix each column with the table alias followed by a period and then
the column name. Column names should denote any conversions of data and source table.

Example:
select t1.column1, t1.column2, addr.column3,
 addr.column4, mt.column5, mt.column6,
 to_char(mt.column1) mt_column1_char
from table1 t1,
 address addr,
 my_table mt;

DCII Standards Design

Section 4 Revised 8/30/2000 Page 29 of 33

DES-202 Use the NVL function on any column that can contain null values when it is being compared
to an actual value or when it is being used in a calculation.

Example:
select nvl(t1.column1, 0) * value1
from table1 t1
where nvl(t1.column5, 0) <= value2;

4.11.6.3 SQL Statements – Select

DES-203 Start the select clause on a separate line. If a long column list requires another line, indent the
line.

Example:
select column1, column2, column3, column4,
 column5, column6

DES-204 Use spaces to follow the select keyword and columns except for the last column in the list.

Example:
select column1, column2, column3, column4

DES-205 Do not use the asterisk (*) to select all columns. Specifically list the columns required.

DES-206 When using expressions, make sure the expression is the last operation performed, especially
in group by functions. For example, multiply the result of a MAX function by 1.5, instead of
each value, to determine the maximum value.

Example:
select max(t1.number1) * value1 max_val
from table1 t1;

DES-207 To use a hint in a select statement, the hint must immediately follow the keyword select
separated by a single space.

Example:
select /*+ full(table1) */

4.11.6.4 SQL Statements – Union, Intersect, and Minus

DES-208 The union, intersect, and minus should be on a line of their own.

Example:
select column1, column2
from table1
union
select column1, column2
from table2;

4.11.6.5 SQL Statements – From

DES-209 Start the from clause on a separate line. Put only one table per line followed by a comma
except after the last table in the list. A single space must be between the table name and the
alias.

Example:
from table1 t1,
 table2 t2,

DCII Standards Design

Section 4 Revised 8/30/2000 Page 30 of 33

 table3 t3

4.11.6.6 SQL Statements – Where

DES-210 Start the where clause on its own line. Put each condition on a separate line. The most
restrictive condition should go last in the where clause.

Note: notice the and was indented.

Example:
where column1 > 0 -- least restrictive condition
 and column2 = ‘1’
 and column3 >= ‘2’ -- most restrictive condition

DES-211 Place join conditions at the beginning of the where clause.

Example:
Where column1 = column1 -- join
 and column2 = column2 -- join
 and column2 = ‘1’ -- condition

DES-212 Use the IN operator instead of multiple OR conditions on the same column.

Example:
where column2 in (‘1’, ‘3’, ‘5’, ‘7’)

Instead of

where column2 = ‘1’
 or column2 = ‘3’
 or column2 = ‘5’
 or column2 = ‘7’

DES-213 When using the OR condition with different columns, use parentheses around the OR
conditions.

Example:
where (column2 = ‘1’
 or column3 = ‘3’)

4.11.6.7 SQL Statements – Group By and Having

DES-214 Only group on the columns used by the select clause.

Example:
select t1.column1, t1.column4, count(*), max(t1.column5)
from table1 t1
where t1.column3 = value1
group by t1.column1, t1.column4;

DES-215 Use as many conditions in the where clause as possible rather than in the having clause. This
prevents the having clause from placing the conditions since indexes are not used by the
having clause.

DES-216 The having clause should only contain group functions for limiting the data.

Example:

DCII Standards Design

Section 4 Revised 8/30/2000 Page 31 of 33

select t1.column1, t1.column4, count(*), max(t1.column5)
from table1 t1
where t1.column3 = value1
group by t1.column1, t1.column4
having count(*) > value2;

4.11.6.8 SQL Statements – Connect By

DES-217 Always specify a starting point using the start with clause. This provides clarity for the usage
of the connect by clause.

DES-218 Do not use the connect by clause with recursive data.

4.11.6.9 SQL Statements – Order by

DES-219 Use the order by clause only if there is a requirement to sort the data.

DES-220 Only use numbers for the order by columns when the set operators (union, minus and
intersect) are being used. Otherwise, use column names.

Example:
select t1.column4, t1.column5, t1.column8
from table1 t1
order by t1.column4, t1.column5;

Example using set operators
select t1.column4 emp_name,
 t1.column5 emp_dept,
 t1.column8 emp_loc
from table1 t1
union
select t2.column1,
 t2.column2,
 t2.column10
from table2 t2
order by 1, 2, 3;

DES-221 If a mix of ascending and descending order sorts is used, indicate the type of sort on all order
by columns.

Example:
select t1.column4, t1.column5, t1.column8
from table1 t1
order by t1.column4 desc,
 t1.column5 asc,
 t1.column8 desc;

4.11.6.10 SQL Statements – For Update

DES-222 The column selected in the for update clause will be the primary key column of the table
being updated.

Example:
select t1.column4, t2.column1, t2.column3
from table1 t1,
 table2 t2 -- primary table
where t1.column1 = t2.column1
for update of t2.column1; -- primary key

DCII Standards Design

Section 4 Revised 8/30/2000 Page 32 of 33

DES-223 The NOWAIT option of the for update clause will not be used in SQL. It will be used in
PL/SQL only, where the exception can be handled.

4.11.6.11 SQL Statements – Insert

DES-224 The keyword values should be on a separate line.

Note: Notice indentation of column listing and values.

Example:
Insert into table1 (column1, column2, column3,
 column4, column5)
values
(value1, value2, value3, value4, value5);

DES-225 Use a full column list for an insert statement for the target table and for the select list when it
exists.

Example:
insert into table4 (column1, column2, column3)
select t2.column3, t2.column4, t2.column5
from table2 t2;

DES-226 When no value is being inserted into a column, specify the NULL value. Do not leave the
column off the column list.

Example:
insert into table4 (column1, column2, column3)
select t2.column3, null, t2.column5
from table2 t2;

4.11.6.12 SQL Statements – Update

DES-227 List each column being updated on a separate line.

Note: Although the where clause is optional, the use of the where clause is highly
recommended. If not used, all rows will be updated with the new value.

Example:
update table1 t1
set t1.column1 = value,
 t1.column2 = value
where t1.column1 = value;

DES-228 The ROWID column can only be used in an update when a select for update statement has
locked the rows.

4.11.6.13 SQL Statements – Delete

DES-229 The format of a delete statement has delete on the first line and from table name on the second
line. This is to emphasis that a delete is taking place.

Note: Although the where clause is optional, the use of the where clause is highly
recommended. If not used, all rows will be deleted.

Example:

DCII Standards Design

Section 4 Revised 8/30/2000 Page 33 of 33

delete
from table1 t1
where t1.column1 = value;

4.11.6.14 SQL Statements – Subqueries

DES-230 The column list in the where clause of the main query should not contain concatenation or
conversion functions. All conversions or concatenation should be done in the select list of the
subquery.

Example:

 Note indentation
select t1.column1, t1.column2
 t1.column3, t1.column4
from table1 t1
where exists (select 'x' --subselect
 from table2 t2
 where t2.column1 = t1.column2)
and t1.column1 > value1
order by t1.column1;

	Design Standards
	Database Design Transformer
	Settings
	Database
	Keys
	Other Settings

	Tables
	Naming Convention
	Definition

	Columns
	Naming Convention
	Definition

	Constraints
	Naming Convention
	Primary Key Constraint
	Unique Key Constraints
	Foreign Key Constraints
	Check Constraints

	Definition
	
	Primary Key Constraint
	Unique Key Constraints

	Indexes
	Naming Convention
	Primary or Unique Key Indexes
	Foreign Key Indexes
	Non-Key Indexes

	Definition

	Sequences
	Naming Convention
	Definition

	Views
	Naming Convention
	Definition

	Database Triggers
	Naming Convention
	Definition

	Application Design Transformer
	Modules
	Scope
	Naming Convention
	Modules
	Module Components
	Module Component Elements
	Item Groups
	Unbound Items
	SQL Query Sets
	Navigation Action Items (Buttons)
	Custom Action Items (Buttons)
	Application Logic Event Code Segments
	Application Logic Named Routines
	API Logic Code Segments

	Named Preference Sets

	PL/SQL and SQL
	Naming Conventions
	General Standards
	Documentation and Formatting
	Data Load Standards
	PL/SQL Coding Standards
	PL/SQL Arguments
	PL/SQL Variables
	PL/SQL Constants
	PL/SQL Global Variables (forms only)
	PL/SQL Declarative Section
	PL/SQL Executable Section
	PL/SQL Exception Handling

	SQL Coding Standards
	General Layout of SQL Statements
	SQL Statements - General
	SQL Statements – Select
	SQL Statements – Union, Intersect, and Minus
	SQL Statements – From
	SQL Statements – Where
	SQL Statements – Group By and Having
	SQL Statements – Connect By
	SQL Statements – Order by
	SQL Statements – For Update
	SQL Statements – Insert
	SQL Statements – Update
	SQL Statements – Delete
	SQL Statements – Subqueries

